Cho 3 số a;b;c đôi 1 khác nhau.CMR:\(\frac{bc}{\left(b-c\right)^2}+\frac{ca}{\left(c-a\right)^2}+\frac{ab}{\left(a-b\right)^2}\ge\frac{-1}{4}\)
a, b, c đôi một khác nhau. CM:\(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}+\frac{\left(b+c\right)^2}{\left(b-c\right)^2}+\frac{\left(a+c\right)^2}{\left(a-c\right)^2}\ge2\)
Với a,b,c là 3 số thực phân biệt đôi một .CMR:\(\left(a^2+b^2+c^2\right).\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{9}{2}\)
Cho a, b, c khác nhau đôi một. Chứng minh rằng: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
Cho a,b,c đôi một khác nhau
Tính P=\(\frac{a^2}{\left(a-b\right)\cdot\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\cdot\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\cdot\left(c-a\right)}\)
Cho a,b,c đôi một khác nhau. Tính giá trị của biểu thức:
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
Cho a,b,c là số hữu tỉ khác 0. Đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).
Cmr\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\) hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0, đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).CMR
\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\)hữu tỉ.
thách ai làm được . cho a,b,c là hằng số và đôi một khác nhau giải pt: \(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)