DV

Cho a,b,c đôi 1 khác nhau và khác 0 thảo mãn \(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ac+1}{a}\)

Tính P=(\(5a^6b^6c^6-8a^2b^2c^2+2\))\(^{2020}\)

Giups mk vs ạ ai nhanh mk tick nha :>

 

AH
8 tháng 12 2021 lúc 0:59

Lời giải:

ĐKĐB \(\Leftrightarrow a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)

\(\Rightarrow \left\{\begin{matrix} a-b=\frac{b-c}{bc}\\ b-c=\frac{c-a}{ac}\\ c-a=\frac{a-b}{ab}\end{matrix}\right.\)

\(\Rightarrow (a-b)(b-c)(c-a)=\frac{(b-c)(c-a)(a-b)}{a^2b^2c^2}\)

Vì $a,b,c$ đôi 1 khác nhau nên $a^2b^2c^2=1$. Khi đó:

\(P=(5.1^3-8.1+2)^{2020}=(-1)^{2020}=1\)

 

Bình luận (0)