BT

Cho ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.

a) Chứng tỏ tam giác ABC vuông tại A.

b)Vẽ phân giác BD (D thuộc AC), từ  D vẽ DE vuông góc với  BC (E thuộc  BC).

Chứng minh DA = DE.

c) ED cắt AB tại F. Chứng minh tam giác ADF = tam giác EDC rồi suy ra DF > DE.

 

 

DN
27 tháng 4 2016 lúc 21:37

a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )

\(\Rightarrow\Delta ABC\) vuông tại A

b) Xét 2 tam giác vuông BDA và BDE, có:

Góc ABD = góc EBD (phân giác BD của góc B)

BD là cạnh chung

\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)

\(\Rightarrow\) DA = DE(2 cạnh tương ứng)

c) Xét 2 tam giác vuông ADF và EDC, ta có:

DA = DE (chứng minh a)

 góc ADF = góc EDC (đối đỉnh)

\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)

Ta có: \(\Delta\)ADF là tam giác vuông tại A 

\(\Rightarrow\) DF là cạnh huyền của tam giác ADF

\(\Rightarrow\) DF > DA

Mà DE = DA (\(\Delta ADF=\Delta EDC\) )

nên DF > DE

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
KT
Xem chi tiết
TN
Xem chi tiết
KH
Xem chi tiết
DB
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
LG
Xem chi tiết
NN
Xem chi tiết