a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
góc C chung
Do đó: ΔADC\(\sim\)ΔBEC
b: Xét ΔHAE vuông tại E và ΔHBD vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHAE\(\sim\)ΔHBD
Suy ra: HA/HB=HE/HD
hay \(HA\cdot HD=HE\cdot HB\)
a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
góc C chung
Do đó: ΔADC\(\sim\)ΔBEC
b: Xét ΔHAE vuông tại E và ΔHBD vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHAE\(\sim\)ΔHBD
Suy ra: HA/HB=HE/HD
hay \(HA\cdot HD=HE\cdot HB\)
Cho tam giác ABC nhọn 3 đường cao AD, BE, CF cắt nhau tại H. Gọi I, K lần lượt là hình chiếu của D trên AB, AC. E, F cắt AD tại O. Chứng minh IK đi qua trung điểm của OD.
Cho ∆ABC vuông tại A, có AB = 12cm; AC = 16cm. Đường phân giác của góc B cắt cạnh AC tại D.
a) Tính độ dài BC và tỉ số AD/DC
b) Kẻ đường cao AH của ∆ABC; AH cắt BD tại K. Chứng minh ∆BHK ~ ∆BAD. Từ đó suy ra BK.BA = BH.BD
Bài 5: Cho tam giác ABC nhọn( AB<AC). Các đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Gọi K là điểm đối xứng với H qua M.
a) Chứng minh tứ giác BHCK là hình bình hành.
b) Chứng minh BK vuông góc với AB.
c) Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G. Tìm điều kiện của tam giác ABC để tứ giác HGKC là hình thang cân.
cho tam giác abc có 3 góc nhọn ab < ac . gọi bd là đường phân giác trong của tam giác abc , dựng đường trung trực của đoạn thẳng bd cắt ac tại m ,
a, chứng minh tam giác mab đồng dạng tam giác mbc .
b , cho ad = 4 cm , dc = 6m . tính ad .
help..............................meeeeeeeeeeeeeeeeeee..................!
Cho tam giac ABC nhọn ( AB < AC) gọi AD; BE; CF lần lượt là các đường cao , EF cắt BC tại K Qua F kẻ đường thẳng song song Với Ac cắt AK, AD lần lượt tại M và N . Chứng minh rằng F là trung điểm của MN.
cho tam giác nhọn ABC, các đường cao AD,BE,CF cắt nhau tại H. cho AE=2cm, CE=4cm, BF=5cm. Tính HC,AH
1. Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từB cắt đường thẳng vuông góc với AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
c. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng
Cho tam giác ABC có 3 góc nhọn , trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
1) Chứng minh tứ giác BHCD là hình bình hành.
2) Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2 OM = AH
3) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.
cho tam giác abc,ab<ac,phân giác ad,đường trung trực của ad cắt bc tại k
a/chứng minh tam giác kab đồng dạng với tam giác kca
b/tính kd biết bd=2,dc=4