Hình học lớp 8

NT

Cho tam giác ABC có 3 góc nhọn , trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D.
1) Chứng minh tứ giác BHCD là hình bình hành.
2) Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2 OM = AH
3) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng.

H24
11 tháng 1 2017 lúc 21:30

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

Bình luận (0)

Các câu hỏi tương tự
LA
Xem chi tiết
BL
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
NH
Xem chi tiết
PM
Xem chi tiết
KD
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết