Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\Leftrightarrow a^3=c^3=b^3\)
Ta có : \(a^3=b^3=c^3=abc\)
\(\frac{a^3}{abc}=\frac{abc}{abc}=1\Leftrightarrow\frac{a^3+b^3+c^3}{3abc}=\frac{3abc}{3abc}=1\)
Vậy \(P=1\)