\(\frac{a}{ab+a+1}=\frac{ac}{abc+ac+c}=\frac{ac}{1+ac+c}\)
\(\frac{b}{bc+b+1}=\frac{abc}{acbc+acb+ac}=\frac{1}{c+1+ac}\)
\(\Leftrightarrow\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+1+c}=1\)
p/s: cộng lại chỉ = 1 thui >: có sai đề ko vại ?????????
À nhầm đề nhé, cho mình xin lỗi, phải thế này mới đúng:
Cho abc = 1.
CMR: \(\frac{a}{ab+a+1}\)+ \(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+c+1}\)= 3