MT

Cho abc = 1 . Tính giá trị của biểu thức M = \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

HP
10 tháng 7 2016 lúc 20:58

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+1}\)

Vì abc=1

\(=>M=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{ac+c+abc}=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{c\left(a+ab+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)

Vậy M=1

Bình luận (0)
MT
10 tháng 7 2016 lúc 20:59

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{ab+a+1}{ab+a+1}=1\)

Bình luận (0)
DL
10 tháng 7 2016 lúc 21:01

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{c}{ac+c+abc}\); abc = 1 => a;b;c khác 0.

\(\Rightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{a+1+ab}=\frac{b+1}{bc+b+a}+\frac{abc}{a+abc+ab}\)

\(\Rightarrow M=\frac{b+1}{bc+b+a}+\frac{bc}{1+bc+b}=\frac{bc+b+1}{bc+b+1}=1\)

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
Xem chi tiết
KT
Xem chi tiết
NP
Xem chi tiết
HT
Xem chi tiết
DH
Xem chi tiết
HV
Xem chi tiết
NM
Xem chi tiết
NQ
Xem chi tiết