Cho a;b;c>1
Tìm Min của biểu thức :
P=\(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
Cho a,b,c.0 thỏa mãn: a+2b+3c=4;
Tìm GTNN của biểu thức; P=4a=7b+10c+\(\frac{4}{a}+\frac{1}{4b}+\frac{1}{9c}\)
Cho a,b,c là các số thực dương thỏa mãn ab + bc + ac = 3. Tìm GTNN của biểu thức P = \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)
Cho a,b,c là các số thực dương thõa mãn ab+bc+ca=3.Tìm GTNN của biểu thức \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)
Cho a,b,c dương thỏa mãn điều kiện \(a^2b^2c^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge a+b+c+ab+bc+ca+3\)
Tìm GTNN của biểu thức:
\(P=\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}\)
Cho các số thực a,b,c thỏa 0<a,b,c<1 và ab+bc+ca=1. Tìm GTNN của biểu thức:
\(A=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
Cho các số thực tùy ý a,b,c > 1. Tìm GTNN của biểu thức
M=\(\frac{a^2}{a-1}\)+\(\frac{2b^2}{b-1}\)+\(\frac{2017c^2}{c-1}\)
Cho a,b,c > 0 . Tim GTNN cua P =\(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
Cho a,b,c > 0 . Tim GTNN cua P = \(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)