CMR :
\(\frac{a-b}{1+ab}+\frac{b-c}{1+bc}+\frac{c-a}{1+ac}=\frac{a-b}{1+ab}-\frac{b-c}{1+bc}-\frac{c-a}{1+ac}\)
Cho a+b+c=1 ( a,b,c khác 1 và 2 ) CMR: \(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+acb-1}=\frac{bc+ac+ab+8}{(a-2)(b-2)(c-2)}\)
cho M =\(\frac{b-c}{a^2-ac-ab+bc}+\frac{c-a}{b^2-ab-cb+ca}+\frac{a-b}{c^2-bc-ac+ab}\) và N=\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\) cmr M=2N
cho abc = 1
CMR \(\frac{b}{bc+b+1}\)+ \(\frac{a}{ab+a+1}\)+\(\frac{c}{ac+c+1}\)= 1
Cho abc = 1.
CMR: \(\frac{a}{ab+a+1}\)= \(\frac{b}{bc+b+1}\)= \(\frac{c}{ac+c+1}\)= 3
\(CMR:\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết
\(abc=1\)
Cho a,b >0 sao cho a+b+c=1 CMR \(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\)
cho \(abc\ne1;-1\) và \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ac+1}{a}\). CMR: a=b=c
Cho abc=1 CMR:\(a+b+c\ge\frac{ab+1}{b+1}+\frac{bc+1}{c+1}+\frac{ca+1}{a+1}\)