Lời giải:
Gọi tổng trên là $A$. Ta có:
$A=\frac{c}{c+ac+abc}+\frac{ca}{ca+b.ca+bc.ca}+\frac{1}{1+c+ca}$
$=\frac{c}{c+ac+1}+\frac{ac}{ca+1+c}+\frac{1}{1+c+ca}=\frac{c+ac+1}{ca+c+1}=1$
Ta có đpcm.
Lời giải:
Gọi tổng trên là $A$. Ta có:
$A=\frac{c}{c+ac+abc}+\frac{ca}{ca+b.ca+bc.ca}+\frac{1}{1+c+ca}$
$=\frac{c}{c+ac+1}+\frac{ac}{ca+1+c}+\frac{1}{1+c+ca}=\frac{c+ac+1}{ca+c+1}=1$
Ta có đpcm.
Cho a,b,c thuộc [0,1] và ko đồng thời bằng 0.Chứng minh rằng
\(\dfrac{1}{1+b+ca}\)+\(\dfrac{1}{1+c+ab}\)+\(\dfrac{1}{1+a+bc}\)\(\le\)\(\dfrac{3}{a+b+c}\)
Cho \(a,b,c\) thỏa mãn \(\left|a\right|,\left|b\right|,\left|c\right|< 1\) và \(ab+bc+ca=2\). Chứng minh :
\(P=\dfrac{a^2}{1-b^2}+\dfrac{b^2}{1-c^2}+\dfrac{c^2}{1-a^2}\ge6\).
Cho tam giác ABC thỏa mãn điều kiện \(\widehat{A}=2\widehat{B}=4\widehat{C}\)
Chứng minh rằng: \(\dfrac{1}{AB}=\dfrac{1}{AC}+\dfrac{1}{BC}\)
1. Cho a,b,c>0 và a+b+c=1. Tìm giá trị nhỏ nhất của:
\(M=\dfrac{1}{1-2\left(ab+bc+ca\right)}+\dfrac{1}{abc}\)
2. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: AB.BP+AC.CN=BC2
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH.MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\text{≤}\dfrac{1}{64}S_3\)
Cho a,b,c>0
CMR:
\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{ab^2+b^2c}+\dfrac{ab}{ac^2+bc^2}\text{≥}\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
cho a, b, c >0. Chứng minh:
\(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Chứng minh rằng \(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ab}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)vớia,b,c>0\)
Giups mình với !!!!!!!!!!!!!!!!!!!!!!
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}\)+\(\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}\)+\(\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\) ≤ 1 cho a,b,c là 3 số dương. Chứng minh các BĐT sau