\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)Từ đây tự làm nốt nhé
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)Từ đây tự làm nốt nhé
Cho a,b,c > 0 và dãy tỉ số : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Cho a,b,c > 0 và dãy tỉ số : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Tính : \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Bài 1 : Cho a. b. c và dãy tỉ số: \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
Tính P= \(\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
cho a,b,c >0 và dãy tỉ số \(\frac{2a+b-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
tính M=\(\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho dãy tỉ số bằng nhau : \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
Tính giá trị của biểu thức: \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)với các mẫu số khác 0
1.cho dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính M= \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{c+b}\)
2. cho 2a=by+cz ; 2b= ax+cz ; 2c= ax+by và a+b+c khác 0
tính giá tri biểu thức P= \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
cho dãy tỉ số :\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}\)
tính :\(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho dãy tỉ số bằng nhau:
\(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
cho a,b,c khác 0 và \(\frac{2a+b}{c}=\frac{2b+c}{a}=\frac{2c+a}{b}\)
Tính \(P=\frac{2a+b}{c}+\frac{2b+c}{a}+\frac{3b}{2c+a}\)