PA

cho a,b,c > 0 và a+b+c=1

c/m : \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{b}\right)\ge64\)

AH
10 tháng 2 2017 lúc 3:41

Lời giải:

\(\text{VT}=\frac{(a+1)(b+1)(c+1)}{abc}\)

Áp dụng bất đẳng thức AM-GM:

\((a+1)(b+1)(c+1)=[(a+b)+(b+c)][(b+c)+(c+a)][(c+a)+(a+b)]\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq \prod 2\sqrt{(a+b)(b+c)}=8(a+b)(b+c)(c+a)\)

Tiếp tục AM-GM: \((a+b)(b+c)(c+a)\geq (2\sqrt{ab})(2\sqrt{bc})(2\sqrt{ac})=8abc\)

\(\Rightarrow \text{VT}\geq 64\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NK
Xem chi tiết
QD
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
NN
Xem chi tiết
QB
Xem chi tiết
NU
Xem chi tiết
NT
Xem chi tiết