Câu trả lời hay nhất: áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3
tk mk nha $_$
Câu trả lời hay nhất: áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3
tk mk nha $_$
cho a+b+c=a^2+b^2+c^2 và a,b,c khác 0 chứng minh rằng 1/a^2+1/b^2+1/c^2=3/abc
Bài 4 cho (a2-bc)(b-abc)=(b2-ac)(a-abc); abc khác 0 và a khác b
Chứng minh rằng 1/a + 1/b + 1/c = a+b+c
Cho 1/a+1/b+1/c=3 và 1/a^2+1/b^2+1/c^2=5(abc khác 0).Chứng minh rằng a+b+c=2abc
Cho ( a+b+c )^2 = a^2 + b^2 + c^2 và a,b,c khác 0. Chứng minh rằng 1/a^3 + 1/b^3 + 1/c^3 = 3/abc
AI LÀM NHANH NHẤT MÌNH LIKE CHO
Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
chứng minh rằng nếu a,b,c thỏa mãn là độ dài 3 cạnh của 1 tam giác ABC thì a^2(b-c)-b^2(a-c)+c^2(a-b)=0 thì ABC cân
cho ̣(a2 - bc) (b - abc) = (b2 - ac) (a - abc) ; abc khác 0 và a khác b.
Chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)
cho (a+b+c)^2=a^2+b^2+c^2 và abc khác 0 chứng minh bc /a^2 +ac /b^2 + ab/c^2 =3
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau