Violympic toán 9

VH

Cho a,b,c >0 và ab+bc+ca=1 Chứng minh \(a\sqrt{b^2+1}+b\sqrt{c^2+1}+c\sqrt{a^2+1}\ge2\)

NL
15 tháng 7 2020 lúc 19:23

\(VT=\sqrt{\left(ab\right)^2+a^2}+\sqrt{\left(bc\right)^2+b^2}+\sqrt{\left(ca\right)^2+c^2}\)

\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+\left(a+b+c\right)^2}\)

\(VT\ge\sqrt{\left(ab+bc+ca\right)^2+3\left(ab+bc+ca\right)}=2\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
VC
Xem chi tiết
KM
Xem chi tiết
LQ
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
NN
Xem chi tiết
DF
Xem chi tiết