Cho ba số a, b, c đề khác 0 và a2 + b2 + c2 - ab - bc - ca = 0
CMR: ( 1 + \(\dfrac{a}{b}\) ) ( 1 + \(\dfrac{b}{c}\) ) ( 1 + \(\dfrac{c}{a}\) ) = 8
Cho a,b,c>0
CMR:
\(\dfrac{bc}{a^2b+a^2c}+\dfrac{ca}{ab^2+b^2c}+\dfrac{ab}{ac^2+bc^2}\text{≥}\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
Cho a khác b khác c và a,b,c khác 0;1/a+1/b+1/c=0
Tính 1/(a^2+2bc)+1/(b^2+2ac)+1/(c^2+2ba)
cho a+b+c = 0 và a,b ,c khác 0
CMR 1/a^2 + 1/b^2 + 1/c^2 = (1/a + 1/b + 1/c)^2
cho a,b,c khác 0 thỏa mãn a+b+c=0 và 1/a+1/b+1/c=7
tính 1/a^2+1/b^2+1/c^2
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a2-bc)(1-ac)=a(1-bc)(b2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m \(\frac{1}{^{a^3}^{ }}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Cho a,b,c là ba số đôi một khác nhau và 1/b-c +1/c-a +1/a-b = 0. CMR số a/(b-c)^2 +b/(c-a)^2 + c/(a-b)^2 = 0