VN

cho a,b,c >0 và 1/1+a +1/1+b +1/1+c =2 tìm giá trị lớn nhất của abc

LP
25 tháng 12 2022 lúc 8:27

Điều kiện đã cho

\(\Leftrightarrow\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)

\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\)

\(\Leftrightarrow\dfrac{1}{1+a}=\dfrac{b+c+2bc}{bc+b+c+1}\)

\(\Leftrightarrow bc+b+c+1=b+c+2bc+ab+ac+2abc\)

\(\Leftrightarrow2abc+ab+bc+ca=1\)

Mà \(ab+bc+ca\ge3\left(\sqrt[3]{abc}\right)^2\)

\(\Rightarrow2abc+3\left(\sqrt[3]{abc}\right)^2\le1\)

Đặt \(\sqrt[3]{abc}=t\left(t\ge0\right)\), khi đó \(2t^3+3t^2\le1\) 

\(\Leftrightarrow\left(t+1\right)^2\left(2t-1\right)\le0\)

Do \(\left(t+1\right)^2\ge0\) nên \(2t-1\le0\) \(\Leftrightarrow t\le\dfrac{1}{2}\) \(\Leftrightarrow abc\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NQ
Xem chi tiết
HD
Xem chi tiết
MC
Xem chi tiết
SA
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
TT
Xem chi tiết