Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm gtnn A= ab^2/(a+b)+bc^2/(b+c)+ca^2/(c+a) với a,b,c>0 thỏa mãn a+b+c=3abc
B1, Cho x, y>0 thỏa mãn x+y=4/3. Tìm gtnn của A=3/x+1/3y
B2, Cho x,y,z thỏa mãn x2 + 2y2 + 10z2= 2015. Tìm gtnn của K= 2xy - 8yz - 2zx
B3, Cho x>=3. Tìm gtnn của M=x + 1/x2
B4, Cho a,b,c >0 thỏa mãn a+b+c=3. Tìm gtln của S=căn (3a+bc) + căn (3b+ca) + căn (3c+ab)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
1tìm x,y thỏa mãn
\(2x^2+y^2+4x-1=0\)
2cho \(\frac{ab+1}{b}=\frac{bc+1}{c}=\frac{ca+1}{a}\) cm a=b=c
Cho a,b,c là các số dương thỏa mãn: a + b + c = 3. Tìm GTNN của:
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1 và ab+bc+ca=1 tìm gtnn của \(P=\frac{a^{^2}.\left(1-2b\right)}{b}+\frac{b.^2.\left(1-2c\right)}{c}+\frac{c^2.\left(1-2a\right)}{a}^{ }\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
a)Cho a2+b2+c2=ab+ac+ca .cmr a=b=c
b)cho ba số a.b,c thỏa mãn a+b-c=0;a2+b2+c=10.tính a4+b4+c4
c)cho a+b+c=0 và ab+bc+ca=0 .Tính giá trị biểu thức P=(a-1)2017+(b-1)2017+(c-1)2017
d) tìm a,b,c thỏa mãn đẳng thức :a2-2a+b2+4b+4c2-4c+6=0