Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

CN

cho a;b;c >0. CMR:

\(P=\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ac+3a^2}\ge a+b+c\)

PC
9 tháng 5 2018 lúc 13:12

 Đề bài bị trái dấu bạn nhé

CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\) 

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\) 

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\) 

\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0 

CMTT các hạng tử khác 

\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)

Bình luận (0)
CN
9 tháng 5 2018 lúc 20:18

vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
TT
Xem chi tiết
CB
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
LD
Xem chi tiết
DA
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết