H24

Cho a,b,c >0. CMR:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

PN
23 tháng 3 2016 lúc 18:29

Ừ thì sai đề vô căn cứ đây!

Dễ dàng chứng minh bất đẳng thức phụ với  \(a,b>0\), và với chú ý rằng nghịch đảo hai vế và đổi chiều bất đẳng thức khi  \(a>b\) và  \(ab>0\)

Ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)  \(\Leftrightarrow\)  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)  \(\Leftrightarrow\)  \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)  \(\left(1\right)\)

Hoàn toàn tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)  \(\left(2\right)\)  và  \(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)  \(\left(3\right)\) 

Cộng từng vế \(\left(1\right);\)  \(\left(2\right)\)  và  ​\(\left(3\right)\), ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

Bình luận (0)
MT
23 tháng 3 2016 lúc 15:30

bạn xem lại dấu BĐT ?

bạn thử thế a=1 c=2 b=3 vào là bik ngay đề sai

Bình luận (0)
H24
23 tháng 3 2016 lúc 15:39

đúng đề rồi mà bạn

Bình luận (0)
MT
23 tháng 3 2016 lúc 15:45

nói chung sai đề

Bình luận (0)
H24
23 tháng 3 2016 lúc 15:47

ukm, vậy thì mk chép sai đề oy

Bình luận (0)
MT
23 tháng 3 2016 lúc 15:48

có thể là lớn hơn hoặc =

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LD
Xem chi tiết
AK
Xem chi tiết
XT
Xem chi tiết
PC
Xem chi tiết
H24
Xem chi tiết
KS
Xem chi tiết