Ôn tập cuối năm phần số học

UH

cho a,b,c >0 . cmr 1/a + 1/b + 1/c >= 4/(2a+b+c) + 4/(a+2b+c) + 4/(a+b+2c)

giúp mình với các cậu

PA
7 tháng 8 2017 lúc 16:07

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\), ta có:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}+\dfrac{4}{a+b}+\dfrac{4}{c+b}+\dfrac{4}{a+c}+\dfrac{4}{b+c}\right)\)

\(=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)

\(\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{a}+\dfrac{2}{c}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
MN
Xem chi tiết
PD
Xem chi tiết
CM
Xem chi tiết
NB
Xem chi tiết
TF
Xem chi tiết