Violympic toán 9

TN

Cho a,b,c > 0 . CM :

\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)

AT
23 tháng 7 2018 lúc 20:05

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)

\(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)

Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)

\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)

\(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
LK
Xem chi tiết
KM
Xem chi tiết
CN
Xem chi tiết
HL
Xem chi tiết