Cho a,b,c > 0 Chứng minh rằng : \(\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
1/ Cho a,b,c>0 và \(a^2+b^2+c^2=3\) . Tìm giá trị nhỏ nhất của biểu thức :
\(\frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+a^4+b^4+c^4\) ?
2/ Cho tam giác ABC. Chứng minh rằng: \(\frac{m_a}{a}+\frac{m_b}{b}+\frac{m_c}{c}\ge\frac{3\sqrt{3}}{2}\) ?
Cho a,b,c,d >0. Chứng minh:
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
Giúp với nha!!!!!
Cho a,b,c > 0 Chứng minh rằng : \(\frac{a^5}{bc}+\frac{b^5}{ac}+\frac{c^5}{ab}\ge a^3+b^3+c^3\)
1) Cho a, b, c > 0. Chứng minh: \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2) Cho \(a,b,c\in R\).
a) Chứng minh: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a+b+c+1\right)^2\)
b) Chứng minh: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)
3) Cho \(a,b,c\in R\)Chứng minh: \(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\ge\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho a,b,c > 0 Chứng minh rằng :\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các số dương . Chứng minh rằng:
a) \(A=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\le\frac{3}{4}\)
b) \(B=\left(a^5-a^2+3\right)\left(b^5-b^2+3\right)\left(c^5-c^2+3\right)\ge\left(a+b+c\right)^3\)
Với a,b,c là các số thực dương.
Chứng minh:\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\frac{a^3+b^3+c^3}{3}\)
Cho 3 số a,b,c >0 thỏa mãn ab+bc+ca=1
Chứng minh rằng:\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)