H24

Cho a,b,c >0, chứng minh rằng :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

 

H24
10 tháng 7 2021 lúc 10:41

Áp dụng bất đẳng thức Svacxo ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)

Tương tự : \(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c};\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)

Dấu = xảy ra khi a=b=c

Bình luận (0)
MY
10 tháng 7 2021 lúc 10:42

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)(BĐT Cauchy Schawarz)(1)

tương tự \(=>\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c}\left(2\right)\)

\(=>\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\left(3\right)\)

(1)(2)(3)

\(=>3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(dpcm\right)\)

Bình luận (0)
H24
10 tháng 7 2021 lúc 10:43

Chứng minh biểu thức \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\\ \Leftrightarrow\dfrac{a+2b}{a}+\dfrac{2\left(a+2b\right)}{b}\ge9\\ \Leftrightarrow\dfrac{2b}{a}+\dfrac{2a}{b}\ge4\\ \Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\left(cosi\right)\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
H3
Xem chi tiết
PN
Xem chi tiết
NC
Xem chi tiết
DB
Xem chi tiết
NC
Xem chi tiết