HT

Cho a,b,c > 0 ; a+b+c=3 Chứng minh rằng : 
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

H24
4 tháng 1 2019 lúc 18:35

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\) (Cô si ngược + Rút gọn)

Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT,ta được: \(VT\ge\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)=3-\frac{ab+bc+ca}{2}\)

Mặt khác,ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (bạn tự c/m,không làm được ib)

Thay x = a; y = b ; z = c,ta có: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)

Suy ra\(VT\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
PA
Xem chi tiết
KT
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
HT
Xem chi tiết