Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra
Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra
Cho a,b,c>0 và abc=1. Chứng minh rằng:
\(\frac{2}{a^3b+a^3c}+\frac{2}{b^3a+b^3c}+\frac{2}{c^3a+c^3b}\ge3\)
Cho a,b,c>0 và a+b+c=1 Tìm min A = \(\frac{a^2}{\sqrt{a+b}}+\frac{b^2}{\sqrt{b+c}}+\frac{c^2}{\sqrt{c+a}}\) Tìm max B = \(\frac{a^2}{\sqrt[3]{3b+c}}+\frac{b^2}{\sqrt[3]{3c+a}}+\frac{c^2}{\sqrt[3]{3a+b}}\)
Cho \(a;b;c>0\)và \(a+b+c=1\)Tìm Min:
\(\frac{3a^2+b^2}{\sqrt{a^2+ab+b^2}}+\frac{3b^2+c^2}{\sqrt{b^2+bc+c^2}}+\frac{3c^2+a^2}{\sqrt{c^2+ca+a^2}}\)
cho a,b,c>0 và ab+bc+ac=3.
tìm min P=\(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)
giúp với nha !
Cho a,b,c >0: abc=1. Tìm :
\(A=\frac{a^3}{a+b+b^3c}+\frac{b^3}{b+c+c^3a}+\frac{c^3}{c+a+a^3b}=???\)
Cho các số thực dương a ; b ; c thỏa mãn : 1/a + 1/b + 1/c \(\le3\)
Tìm Min P = \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
ĐỐ NHÉ!!!!!!!!!!!!
Cho a,b,c >0 và a+b+c=1. Tìm MAX
\(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Cho các số thực dương a ; b ; c t/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tìm MIn : P = \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
Cho a,b,c >0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)=2016. CMR: \(\frac{bc}{a^2\left(3b+c\right)}+\frac{ca}{b^2\left(3c+a\right)}+\frac{ab}{c^2\left(3a+b\right)}\ge504\)