ta có (a+b)(b+c)(c+a)+abc
=(a+b)(bc+ab+c^2+ca)+abc
=(a+b)(bc+ab+ca+c^2)+abc
=(a+b).c^2+abc
=ac^2+bc^2+abc
=c(ac+bc+ab)=c.0=0 (đpcm)
ta có (a+b)(b+c)(c+a)+abc
=(a+b)(bc+ab+c^2+ca)+abc
=(a+b)(bc+ab+ca+c^2)+abc
=(a+b).c^2+abc
=ac^2+bc^2+abc
=c(ac+bc+ab)=c.0=0 (đpcm)
Cho ab+bc+ca=0, abc khác 0. Chứng minh rằng (a+b)(b+c)(c+a)+abc=0
Cho ab+bc+ca=0. Chứng minh rằng (a+b)+(b+c)+(c+a)+abc=0
Cho tam giác ABC có góc A tù,trên cạnh AB lấyđ iểmD( KhácAvàB).TrêncạnhAC
lấy điểm E ( Khác A và C). Chứng minh rằng DE<BC
Cho ab+bc+ca=0. Chứng minh rằng (a+b)(b+c)(c+a)+abc=0
Bài 4.Cho V ABC cân tại A có góc A =40 độ.Trên cạnh AB lấy điểm D,trên tia đối của tia CA lấy điểm E sao cho BD= CE. Kẻ DH và EK cùng vuông góc với đường thẳng BC. (H,K thuộc BC).
1) Tính góc B, gócC của tam giác ABC.
2)Chứng minh DH=EK.
3)Gọi M là trung điểm của HK,chứng minh M là trung điểm của DE.
Bài 5.Chứng minh rằng nếu a/b=b/c thì a2+b2/b2+c2= a/c với b,c khác 0.
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ âm nếu a và b khác dấu.
Cho a,b,c thuộc R và a,b,c khác 0 thỏa mãn b^2=ac
Chứng minh rằng
a/c = (a+2007b)^2 tất cả chia cho (b+2007x)^2
Cho tỉ lệ thức a b = c d (a, b, c, d khác 0, a ≠ b, c ≠ d). Chứng minh rằng: a a - b = c c - d
Cho 3 số a,b,c thỏa mãn: a+b+c=0. Chứng minh rằng: ab+bc+ca nhỏ hơn hoặc bằng 0.