Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LD

cho ab+bc+ac=0 va abc\(\ne\)0. tinh A=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)

 

PN
10 tháng 1 2016 lúc 20:26

Ta có:   \(ab+bc+ac=0\)  và  \(abc\ne0\)

nên   \(\frac{ab+bc+ac}{abc}=0\), tức là  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Nếu   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)  thì  \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}=\frac{3}{abc}\) 

(bạn tham khảo cách chứng minh tại link sau: http://olm.vn/hoi-dap/question/373691.html)

Do đó:   \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^3}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)

với   \(a,b,c\ne0\) 

 

Bình luận (0)
HB
10 tháng 1 2016 lúc 20:28

\(ab+bc+ca=0\) 

\(\Leftrightarrow ab+bc=-ac\)

\(\Leftrightarrow a^3b^3+b^3c^3+3ab^2c\left(ab+bc\right)=-a^3c^{3 }\)

\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}\)

\(\Leftrightarrow A=3\)

Bình luận (0)

Các câu hỏi tương tự
JY
Xem chi tiết
UJ
Xem chi tiết
DB
Xem chi tiết
LC
Xem chi tiết
TD
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
LH
Xem chi tiết