H24

Cho a+b=1

Tính giá trị biểu thức sau:

M= a3 +b3 +3ab.(a2 +b2)+6a2b2.(a+b)

 

H24
29 tháng 11 2019 lúc 17:54

Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)

=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2     (vì a+b=1)

=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2 

=> M = 1

Vậy M = 1

Bình luận (0)
 Khách vãng lai đã xóa
NN
20 tháng 4 2020 lúc 15:47

Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\)vào biểu thứ ta được:

\(M=1-3ab+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1+\left[-3ab+3ab\left(a^2+b^2\right)+6a^2b^2\right]\)

\(=1+3ab\left(-1+a^2+b^2+2ab\right)\)

\(=1+3ab\left(a^2+2ab+b^2-1\right)\)

\(=1+3ab\left[\left(a+b\right)^2-1\right]\)

Thay \(a+b=1\)vào biểu thức ta được:

\(M=1+3ab\left(1-1\right)=1+3ab.0=1\)

Vậy \(M=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
N2
Xem chi tiết
TV
Xem chi tiết
KV
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
CI
Xem chi tiết
PB
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
DN
Xem chi tiết