Giả sử d là ước chung lớn nhất của a và b
=> a chia hết cho d; b chia hết cho d
=> a2 + b2 chia hết cho d
=> ab cũng chia hết cho d
Mà (a, b) = 1
=> Trái với đề bài
Vậy a2 + b2 và ab nguyên tố cùng nhau.
Giả sử d là ước chung lớn nhất của a và b
=> a chia hết cho d; b chia hết cho d
=> a2 + b2 chia hết cho d
=> ab cũng chia hết cho d
Mà (a, b) = 1
=> Trái với đề bài
Vậy a2 + b2 và ab nguyên tố cùng nhau.
Cho (a,b)=1. CMR a2+b2 và ab nguyên tố cùng nhau.
jup mih
Cho a,b,c là 3 số nguyên dương đôi 1 nguyên tố cùng nhau.CMR(ab+bc+ac) và abc là 2 số nguyên tố cùng nhau
Cho a và b là hai số nguyên tố cùng nhau . Chứng minh rằng các số sau cũng là hai số nguyên tố cùng nhau
a ) b và a - b ( a > b )
b) a\(^2\)+ b\(^2\)và ab
Chứng minh rằng nếu số c nguyên tố cùng nhau với a và với b thì c nguyên tố cùng nhau với tích ab
cho a và b là hai số nguyên tố cùng nhau.Chứng tỏ 8a+3b,5a+2b là hai số nguyên tố cùng nhau.
CMR : 3n +1 và 3n^3 - 2n^2 + 2n + 2 nguyên tố cùng nhau
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
CMR: n^2+n+1 và n^2+n-1 là 2 số nguyên tố cùng nhau
cho p là số nguyên tố, a là số tự nhiên, a và p nguyên tố cùng nhau. chứng tỏ rằng a^(p-1) chia hết cho p