Cho ab=1. Chứng minh: a^5+b^5=(a^3+b^3).(a^2+b^2)-(a+b) giúp em nhanh vs
Cho ab=1. Chứng minh rằng:
\(a^5+b^5=\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)\)
Cho a,b,c>0. Chứng minh:
a^5/(a^2+ab+b^2) + b^5/(b^2+bc+c^2) +c^5/(c^2+ac+c^2) >= (a^3+b^3+c^3)/3
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Cho a,b,c >0 . Chứng minh A) a^3/b(b+c) + b^3/c(c+a) c^3/a(a+b) > hoặc = 1/2(a+b+c)
B). a^3/(b+2c)^2 + b^3/(c+2a)^2 + c^3/(a+2b)^2 > hoặc = 2/9(a+b+c)
C) a^5/bc^2 + b^5/ca^2 + c^5/ab^2 > or = a^2 + b^2 + c^2
chú ý khánh linh nhớ mai đãi kem nha viết mỏi tay quá cơ
TỚ VIẾT ĐỀ CHO BẠN TỚ MONG CÁC BẠN ĐỪNG ĐỂ Ý NHA
1) Cho a,b,c thộc đoạn 0,1 thỏa mãn a+b+c=2. chứng minh rằng a^2 +b^2+c^2<=2
2) cho ................................ chứng minh rằng a(1-b)+b(1-c)+c(1-a)<=1
3)...................................................................... a+b^2+c^3-ab-bc-ca<=1
4) cho a,b,c là độ dài 3 cạnh ta giác và a+b+c=2. chứng minh rằng a^2+b^2+c^2<2
5)...........................................................a+b+c=1. chứng minh rằng a^2+b^2+c^2 <1/2
Cho \(ab=1\). Chứng minh rằng: \(\left(a^3+b^3\right)\left(a^2+b^2\right)-\left(a+b\right)=a^5+b^5\)
1, cho a,b,c>0. chứng minh \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
2, chứng minh: với mọi a,b \(\ne0\)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)
3,cho các số thực \(\in\)đoạn 0 đến 1. chứng minh:\(a^4+a^3+c^2-ab-bc-ca\le1\)
4,cho a,b,c là các số thực dương tùy ý. chứng minh: \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2\left(a+b+c\right)\)
5,cho a,b,c>0. chứng minh\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\)
ai làm đk bài nào thì làm hộ e vs ạ
cho a b c là các số thực dương thỏa mãn ab^2+bc^2 +ca^2=3 . Chứng minh rằng : (2a^5+3b^5)/ab +(2b^5+3c^5)/bc +(2c^5+3a^5)ca >= 15(a^3 +b^3 +c^3-2)