Violympic toán 9

PQ

Cho \(a,b>0\)\(a^2b+ab^2+ab=a^2+b^2\). Tìm max P \(=\) \(\frac{1}{a}\sqrt{1+\frac{a}{b}}+\frac{1}{b}\sqrt{1+\frac{b}{a}}\)

NL
20 tháng 6 2020 lúc 5:47

\(\frac{1}{2}\left(a+b\right)^2\le a^2+b^2=ab\left(a+b\right)+ab\le ab\left(a+b\right)+\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\frac{1}{2}\left(a+b\right)^2\le ab\left(a+b\right)+\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\frac{1}{4}\left(a+b\right)^2\le ab\left(a+b\right)\Rightarrow a+b\le4ab\)

\(\Rightarrow\frac{a+b}{ab}\le4\)

\(P=\frac{\sqrt{b\left(a+b\right)}}{ab}+\frac{\sqrt{a\left(a+b\right)}}{ab}=\frac{1}{2\sqrt{2}}\left(\frac{2\sqrt{2b\left(a+b\right)}+2\sqrt{2a\left(a+b\right)}}{ab}\right)\)

\(P\le\frac{1}{2\sqrt{2}}\left(\frac{2b+a+b+2a+a+b}{ab}\right)=\sqrt{2}\left(\frac{a+b}{ab}\right)\le4\sqrt{2}\)

\(P_{max}=4\sqrt{2}\) khi \(a=b=\frac{1}{2}\)

Bình luận (0)
PQ
14 tháng 6 2020 lúc 16:42

@Nguyễn Lê Phước Thịnh

Bình luận (0)

Các câu hỏi tương tự
VP
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
BL
Xem chi tiết
TQ
Xem chi tiết
DP
Xem chi tiết
CP
Xem chi tiết
TO
Xem chi tiết
KD
Xem chi tiết