Ôn tập cuối năm phần số học

NK

Cho a,b>0; \(a+b\le1.\) Tìm GTNN của biểu thức \(P=a^2+b^2+\dfrac{1}{a^2}+\dfrac{1}{b^2}\)

NL
11 tháng 9 2021 lúc 19:31

\(P=\left(a^2+\dfrac{1}{16a^2}\right)+\left(b^2+\dfrac{1}{16b^2}\right)+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(P\ge1+\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.\left(\dfrac{4}{1}\right)^2=\dfrac{17}{2}\)

\(P_{min}=\dfrac{17}{2}\) khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
KH
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết
QL
Xem chi tiết
SN
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết