ND

cho a,b thuộc Z, b >0. So sánh hai số hữu tỉ \(\frac{a}{b}\) và\(\frac{a+2001}{b+2001}\)

NM
9 tháng 9 2021 lúc 10:37

\(\frac{a}{b}-\frac{a+2001}{b+2001}=\frac{a\left(b+2001\right)-b\left(a+2001\right)}{b\left(b+2001\right)}=\frac{2001\left(a-b\right)}{b\left(b+2001\right)}.\)

Ta có \(b>0\Rightarrow b\left(b+2001\right)>0\)

+ Nếu \(a>b\Rightarrow2001\left(a-b\right)>0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}>0\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)

+ Nếu \(a< b\Rightarrow2001\left(a-b\right)< 0\Rightarrow\frac{2001\left(a-b\right)}{b\left(b+2001\right)}< 0\Rightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
NY
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết