Câu 2: Chứng minh rằng: 2a + 3b chia hết cho 17 tương đương với 9a +5b chia hết cho 17
cho a và b là các số nguyên ,hãy chứng minh rằng: nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17 và ngược lại
Cho a và b là các số nguyên , hãy chứng minh rằng :
Nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17 và ngược lại
cho a,b thuộc N
chứng tỏ
a)nếu 5a+3b chia hết cho 7 thì a+4b chia hết cho 7
b) nếu 2a+3b chia hết cho 17 thì 9a+5b chia hết cho 17
Cho các số tự nhiên a, b khác 0. Biết (9a + 5b + 3 ) chia hết cho 17. CMR: (2a + 3b - 5) chia hết
cho 17.
Cho a,b thuộc Z. CMR:
(2a + 3b) chia hết cho 17 khi và chỉ khi (9a+5b) chia hết cho 17.
Chứng tỏ rằng nếu 2a+3b chia hết cho 17 thì 9a+5b cũng chia hết cho 17. Điều ngược lại có đúng không.
Cho a,b thuộc N: cHỨNG MINH RẰNG NẾU 2a + 3b chia hết cho 17 thì 9a + 57 chia hết cho 17 và ngược lại