Ta có: \(a+b=a+b\)
Vì \(a>b\)( giả thiết )
\(\Rightarrow a+b+a>a+b+b\)\(\Rightarrow2a+b>a+2b\)
hay \(2b+a< 2a+b\)
Trừ hai biểu thức cho nhau là ra ý mà
Xét hiệu \(\left(2b+a\right)-\left(2a+b\right)=b+b+a-a-a-b\)
\(=\left(b+b-b\right)-\left(a+a-a\right)=b-a\). Mà \(a>b\Leftrightarrow b< a\)
\(\Rightarrow b-a< 0\) hay \(2b+a< 2a+b\)