3IA+ 4IA+ 4AB=0
7IA= -4AB
IA=-4/7 AB
3IA+ 4IA+ 4AB=0
7IA= -4AB
IA=-4/7 AB
Cho tam giác ABC.Gọi I là điểm đối xứng của trọng tâm G qua B.
a, Chứng minh \(\overrightarrow{IA}-5\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
b, Đặt \(\overrightarrow{AG}=\overrightarrow{a},\overrightarrow{AI}=\overrightarrow{b}\) .Tính \(\overrightarrow{AB};\overrightarrow{AC}\) theo \(\overrightarrow{a},\overrightarrow{b}\)
Cho tam giác ABC có trọng tâm G. Gọi I,J là các điểm thoã mãn: \(\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\), \(\overrightarrow{JA}\)+\(\overrightarrow{JB}-3\overrightarrow{JC}=\overrightarrow{0}\)
a)xác dịnh các điểm I,J
b)CM: I,B,G thẳng hàng
c) CM: IJ song song AC
Cho tam giác ABC có G là trọng tâm. Lấy I,Jsao cho:\(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0},2\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M,N là trung diêm AB,BC. CM: M,N,J thẳng hàng
Tam giác ABC, trọng tâm G. M, N là trung điểm AB, BC. I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\) và \(\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M, N, J thẳng hàng
b) J là trung điểm BI
Cho tam giác ABC. Tìm điểm thỏa mãn
a)\(2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)
b)\(\overrightarrow{KA}+2\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{BC}\)
c)\(3\overrightarrow{LA}-\overrightarrow{LB}+2\overrightarrow{LC}=\overrightarrow{0}\)
d)\(\overrightarrow{JA}-\overrightarrow{JB}-2\overrightarrow{JC}=\overrightarrow{0}\)
e)\(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}=2\overrightarrow{BC}\)
Câu 1: Cho hình vuông ABCD có cạnh bằng 1. Gọi O là giao điểm 2 đường chéo AC, BD. Tìm khẳng định sai:
A. \(\overrightarrow{AB}.\overrightarrow{BC}=0\)
B.\(\overrightarrow{BC}.\overrightarrow{BD}=1\)
C.\(\overrightarrow{OD}.\overrightarrow{OB}=-\frac{1}{2}\)
D. \(\overrightarrow{AB}.\overrightarrow{AC}=\sqrt{2}\)
Câu 2: Cho tam giác ABC có M là trung điểm BC, N là trung điểm của BM. Đẳng thức nào sau đây đúng?
A. \(4\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}
\)
B, \(2\overrightarrow{AN}=3\overrightarrow{AB}+\overrightarrow{AC}\)
C.\(4\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{3AC}\)
D.\(4\overrightarrow{AN}=3\overrightarrow{AB}+2\overrightarrow{AC}\)
cho tam giác ABC có D,E,F lần lượt là trung điểm của BC , CA, AB. Gọi M là trung điểm của AD . Chứng minh
a, \(2\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
b, \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=4\overrightarrow{OM}\)( O tùy ý)
c, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{0}\)
Bài 1: Cho 4 điểm A, B,C,D bất kì. Gọi M,N lần lượt là trung điểm của AC và BD. Chứng minh rằng \(\overrightarrow{AB}\) +\(\overrightarrow{CD}\) = 2\(\overrightarrow{MN}\)
Bài 2: Cho 4 điểm A, B,C,D bất kì và M,N lần lượt là trung điểm của AB và CD. G là trung điểm MN. Chứng minh rằng:
a, \(\overrightarrow{GA}\) +\(\overrightarrow{GB}\) +\(\overrightarrow{GC}\) + \(\overrightarrow{GD}\) = \(\overrightarrow{0}\)
b, Với mọi điểm O ta đều có: \(\overrightarrow{OA}\)+\(\overrightarrow{OB}\)+\(\overrightarrow{OC}\)+\(\overrightarrow{OD}\)= 4\(\overrightarrow{OG}\)
Bài 3: Cho ngũ giác ABCDE. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DE. Gọi I,J lần lượt là trung điểm của MP và NQ. Chứng minh rằng \(\overrightarrow{IJ}\)= \(\overset{1}{4}\) \(\overrightarrow{AE}\)
Bài 1: cho \(\Delta ABC\) vuông tại A , AC = 2AB = 2a. hãy dựng các vecto và tính độ dài của chúng:
1, \(\overrightarrow{c}\) = \(2\overrightarrow{AB}+3\overrightarrow{AC}\)
2, \(\overrightarrow{u}=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{4}{5}\overrightarrow{AC}\)
3, \(\overrightarrow{v}=\dfrac{7}{4}\overrightarrow{AB}-\dfrac{5}{2}\overrightarrow{AC}\)