\(P=a^7b^3-a^3b^7\)
\(P=a^3b^3\left(a^4-b^4\right)\)
\(P=a^3b^3\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\)
Ta sẽ chứng minh \(P\) chia hết cho 5 và cho 6.
a) CM \(5|P\). Kí hiệu \(\left(a;b\right)\) là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu \(a\equiv b\left(mod5\right)\) cũng coi như hoàn tất. \(a+b\equiv0\left(mod5\right)\) cũng như thế.
Do đó ta loại đi được các trường hợp \(\left(0;0\right),\left(1;1\right),\left(2;2\right),\left(3;3\right),\left(4;4\right)\) và \(\left(1;4\right),\left(2;3\right),\left(3;2\right),\left(4;1\right)\) và \(\left(0;1\right),\left(0;2\right),\left(0;3\right),\left(0;4\right),\left(1;0\right),\left(2;0\right),\left(3;0\right),\left(4;0\right)\)
Ta chỉ còn lại 8 trường hợp là \(\left(1;2\right),\left(1;3\right),\left(2;4\right),\left(3;4\right)\) và các hoán vị. Nếu \(\left(a;b\right)\equiv\left(1;2\right)\left(mod5\right)\) thì \(a^2+b^2=\left(5k+1\right)^2+\left(5l+2\right)^2=25k^2+10k+1+25l^2+20l+4=5P+5⋮5\)
Các trường hợp còn lại xét tương tự \(\Rightarrow5|P\).
b) CM \(6|P\). Ta thấy \(a^3b^3\left(a-b\right)\left(a+b\right)\) luôn là số chẵn (nếu \(a\equiv b\left(mod2\right)\) thì \(2|a-b\), còn nếu \(a\ne b\left(mod2\right)\) thì \(2|a^3b^3\).
Đồng thời, cũng dễ thấy \(3|P\) vì nếu \(a\) hay \(b\) chia hết cho 3 thì coi như xong. Nếu \(a\equiv b\left(mod3\right)\) cũng xong. Còn nếu \(a+b\equiv0\left(mod3\right)\) thì cũng hoàn tất.
Suy ra \(6|P\)
Từ đó suy ra \(30|P\)
Ta sẽ chứng minh chia hết cho 5 và cho 6.
a) CM . Kí hiệu là cặp số dư lần lượt của a và b khi chia cho 5.
Nếu a hoặc b chia hết cho 5 thì xong. Còn nếu cũng coi như hoàn tất. cũng như thế.
Do đó ta loại đi được các trường hợp và và
Ta chỉ còn lại 8 trường hợp là và các hoán vị. Nếu
Các câu hỏi tương tự
cho các số a1;a2;a3;...;a7 là các số nguyên và b1;b2;b3;...;b7 cũng là các số nguyên đó nhưng lấy theo thứ tự khác. CMR: (a1-b1)(a2-b2)....(a7-b7) là số chẵn
a) cho ba số nguyên a,b,c thỏa mãn :a+b=c+d và ab +1=cd . Chứng tỏ c=d
b)cho dãy số nguyên dương : a1,a2,a3,...a7.Gọi b1,b2,...b7 là cách sắp xếp theo thứ tự khác của các số trên . Tính tổng
c)(a1+b1),(a2+b2),....(a7+b7) và cho biết tích P=(a1+b1).(a2+b2).....(a7+b7) là chẵn hay lẻ?
CÁC BẠN GIẢI NHANH GIÙM MÌNH NHA!
giup minh lam bai nay voi. nhanh len nha! ^^
Cho a1, a2, a3, ... , a7 là các số nguyên. b1, b2, b3, ...., bn là các số nguyên đó nhưng lấy theo thứ tự khác. CMR: (a1 - b1) . (a2-b2) . .... ( a7-b7) là số chẵn
luu y: a1 không phải là a nhân với 1 đâu nhé, chắc la số a thứ nhất , các số kia cũng thế nha . thanks
cho 7 số tự nhiên bất kì a1;a2;a3;...;a7.chứng minh rằng luôn chọn được 4 số từ những số trên để tổng của chúng chia hết cho 4
Cho 10 số tự nhiên bất kì liên tiếp:a,a1,a2,a3,a4,a5,a6,a7,a8,a9. Chứng minh rằng thế nào cũng có một số hoacwjtoongr 1 số các số liên tiếp nhau trong dãy chia hết cho 10.
Cho 2015 số nguyên: a1; a2; a3; ...; a2015 và b1; b2; b3; ...; b2015 là các hoán vị của nó. Chứng minh (â1-b1).(â2-b2).(a3-b3)...(a2015-b2015) là số chẵn
Chứng minh rằng a5b - ab chia hết cho 30 với a,b là hai số nguyên bất kì.
B1:
A=5+52+53+...+530chia hết cho 31
B=1+4+42+42+43+...+4120chia hết cho 5 và 21
c)Chứng minh rằng : nếu số abcd chia hết cho 99 thì ab+cd chia hết cho 99 và ngược lại
B2:
Chứng tỏ rằng (n+20).(n+11) là hợp số với mọi số tự nhiên n
B3:
Cho p và p+4 là các số nguyên tố(p>3).Chứng minh rằng p + 8 là hợp số
B4:
Tìm số nguyên tố p sao cho :
a) p+2 và p+4 cũng là các số nguyên tố
b)p+4 và p+8 cũng là các số nguyên tố
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3