DH

Cho a;b là số 2 nguyên và \(a^2+b^2\) chia hết cho \(1+ab\) . Chứng minh \(A=\frac{a^2+b^2}{1+ab}\) là số chính phương

LD
6 tháng 5 2018 lúc 16:16

Đặt \(k=\frac{a^2+b^2}{ab+1}\)\(\left(k\inℤ\right)\)

Giả sử k không là số chính phương 

Cố định số nguyên dương k,sẽ tồn tại cặp (a,b) . Ta kí hiệu 

\(S=\left(\left(a,b\right)\in N\times N|\frac{a^2+b^2}{ab+1}=k\right)\)

Theo nguyên lí cực hạn thì các cặp thuộc S tồn tại (a,b) sao cho a+b đạt min

Giả sử \(a\ge b>0\)cố định b ta còn số nữa khác a theo phương trình \(k=\frac{x+b^2}{xb+1}\)

\(\Leftrightarrow x^2-kbx+b^2-k=0\)phương trình có nghiệm a

Theo \(VIET:\hept{\begin{cases}a+x_2=kb\\a.x_2=b^2-k\end{cases}}\)

\(\Rightarrow x_2=kb-a=\frac{b^2-k}{a}\)

Dễ thấy x2 nguyên

Nếu x2<0 thì \(x_2^2-kbx_2+b^2-k\ge x^2_2+k+b^2-k>0\)(vô lí)   \(\Rightarrow x_2\ge0\)do đó \(\left(x_2,b\right)\in S\)

Do \(a\ge b>0\Rightarrow x_2=\frac{b^2-k}{a}< \frac{a^2-k}{a}< a\)

\(\Rightarrow x_2+b< a+b\)(trái với a+b đạt min)

=> k là số chính phương (đpcm)

Xong rồi đấy,bạn tinck cho mình với nhé 

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
BA
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
CL
Xem chi tiết
KT
Xem chi tiết