KM

Cho a,b là hai số nguyên tố cùng nhau . CMR \(\frac{8a+3b}{5a+2b}\)là phân số TỐI GIẢN 

NM
7 tháng 4 2017 lúc 21:00

Gọi d=ƯCLN(8a+3b;5a+2b)

=> \(8a+3b⋮d\)

 \(5a+2b⋮d\)

=> \(5\left(8a+3b\right)⋮d\)

\(8\left(5a+2b\right)⋮d\)

=>\(40a+15b⋮d\)

\(40a+16b⋮d\)

=>\(\left(40a+16b\right)-\left(40a+15b\right)⋮d\)

=>\(b⋮d\)

Có \(8a+3b⋮d\)

\(5a+2b⋮d\)

=> \(2\left(8a+3b\right)⋮d\)

\(3\left(5a+2b\right)⋮d\)

=>\(16a+6b⋮d\)

\(15a+6b⋮d\)

=>\(\left(16a+6b\right)-\left(15a+6b\right)⋮d\)

=> \(a⋮d\)

Ta có \(a⋮d\)\(b⋮d\), mà a,b là 2 số nguyên tố cùng nhau 

=>d=1

Vì ƯCLN(8a+3b;5a+2b)=1 nên phân số đã cho tối giản

Bình luận (0)

Các câu hỏi tương tự
NV
Xem chi tiết
TA
Xem chi tiết
TL
Xem chi tiết
AH
Xem chi tiết
BT
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết