Cho a,b,c là các số thực dương thỏa mãn a+b+c=3. Chứng minh rằng :
\(\dfrac{5a^3-b^3}{ab+3a^2}+\dfrac{5b^3-c^3}{bc+3b^2}+\dfrac{5c^3-a^3}{ca+3c^2}\le3\)
Bài 1:
a) Tìm số nguyên tố thỏa mãn : (p+4), (p+8) cũng là các số nguyên .
b) Tìm số hữu tỉ a thỏa mãn : 2a + 5a là số tự nhiên và là số chính phương.
o a,b,c là độ dài các cạnh trong tam giác thỏa mãn abc=2c+b
CMR \(\dfrac{3}{b+c-a}+\dfrac{4}{c+a-b}+\dfrac{5}{a+b-c}\ge4\sqrt{3}\)
Cho a, b, c là ba số thực không âm và thỏa mãn: a + b + c = 1. Chứng minh rằng 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ 7
cho a,b,c là các số dương thỏa mãn a+b+c=3. Tìn giá trị lớn nhất của \(P=\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\)
Cho a,b,c là các số dương thỏa mãn điều kiện a+b+c=3. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ca+3a^3}\)
Cho a,b,c là các số thực dương thỏa mãn ab + bc + ca = 28
Tìm min \(A=\frac{5a+5b+2c}{\sqrt{12\left(a^2+28\right)}+\sqrt{12\left(b^2+28\right)}+\sqrt{c^2+28}}\)
1, Cho a,b, c là các số thực dương thỏa mãn a + b + c = 5 . Tìm giá trị nhỏ nhất của biểu thức P=a/(ab+5c) + b/(bc+5a)+ c/(ca+5b )
2, giải phương trình : 5/x^2 + 2x/√(x^2+5) =1
3,Cho x,y, z là các số thực dương thỏa mãn x + y + z = 1. CMr : (1-x^2)/(x+yz)+(1-y^2)/(y+xz)+(1-z^2)/(z+xy) ≥6
Cho a, b, c là các số thực dương thỏa mãn (4a + 5b)(4b + 5c)(4c + 5a) = 729
Tìm GTLN của \(abc\cdot\left(a^2+bc+ca\right)\left(b^2+ca+ab\right)\left(c^2+ab+bc\right)\)