Thêm điều kiện là a,b cùng dấu nha! mình đánh thiếu
Thêm điều kiện là a,b cùng dấu nha! mình đánh thiếu
Bài 1: Cho a, b cùng dấu. Chứng minh rằng: \(\left(\frac{a^2+b^2}{2}\right)^3\le\left(\frac{a^3+b^3}{2}\right)^2\)
Bài 2: Cho \(a^2+b^2\ne0\). Chứng minh rằng: \(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5}\)
Bài 3: Cho a, b > 0. Chứng minh rằng: \(\frac{a}{b^2}+\frac{b}{a^2}+\frac{16}{a+b}\ge5\left(\frac{1}{a}+\frac{1}{b}\right)\)
Bài 4: Cho a, b>0. Chứng minh rằng: \(\frac{3a^2+2ab+3b^2}{a+b}\ge2\sqrt{2\left(a^2+b^2\right)}\)
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
Cho a,b,c > 0 thỏa mãn a + b + c = 3.
Chứng minh rằng: \(\frac{a^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{b^4}{\left(c+a\right)\left(c^2+a^2\right)}+\frac{c^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{3}{4}\)
1. Cho 2 số thực a, b thỏa điều kiện ab = 1, a + b khác 0. Tính GTBT:
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
2. Giải phương trình \(2x^2+x+3=3x\sqrt{x+3}\)
3. Chứng minh rằng \(abc\left(a^3-b^3\right)\left(b^3-c^3\right)\left(c^3-a^3\right)⋮7\) với mọi a, b, c nguyên.
4. Cho 2 số dương a, b thỏa mãn \(a+b\le1.\) Chứng minh rằng: \(a^2-\frac{3}{4a}-\frac{a}{b}\le-\frac{9}{4}\)
Cần GẤP nhé m.n!!! m.n ko cần phải làm hết đâu...
cho a;b là 2 số thực a;b khác 0 cmr: \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3.\left(\frac{a}{b}+\frac{b}{a}\right)+4\ge0\)
cho 3 số a, b, c>0, và a+b+c=3. chứng minh rằng:
\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\frac{1}{3}\)
giải giup minh nhe
Cho a,b,c là ba số thực đôi một khác nhau thỏa mãn hệ thức:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\).
Chứng minh rằng: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Hóng sol hay cho bài này.
Cho a,b,c >0. Chứng minh rằng: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{\left(9+4\sqrt{2}\right)\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\)
(tthnew)
1. Chứng minh BĐT
a, \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b, \(2a^2+2b^2+8\ge2ab+a+b\)
2. Cho x,y,z \(\ge0\). Chứng minh \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)
3. Cho \(a,b,c\ge0,a+b+c=1\).Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
4. Cho \(x,y,z\ge0\)Chứng minh \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)