a2000+b2000=a2001+b2001=a2002+b2002 <=> a=b=1
Vay a2011+b2011=2
a2000+b2000=a2001+b2001=a2002+b2002 <=> a=b=1
Vay a2011+b2011=2
Mong các bạn giúp mình bài này
Khi khai triển và ước lượng số hạng đồng dạng của
P(x)=(1−x+x^2−x^3+...−x^1999+x^2000)(1+x+x^2+x^3+...+x^1999+x^2000)(1−x+x^2−x^3+...−x^1999+x^2000)(1+x+x^2+x^3+...+x^1999+x^2000) ta có thể viết P(x) dưới dạng
P(x)= a0+a1.x+a2.x^2+a3.x^3+...+a4000.x^4000
Tính a2001
1) Cho a + b= -2, a^2 + b^2 = 52. Tính a^3 +b^3
2) Cho a + b = 7, a^2 + b^2 = 25. TÍnh a^3 + b^3, a^4 + b^4
3) Cho a + b = 5, a^2 + b^2 = 53. Tính a^3 + b^3, a^4 + b^4
1.Cho bốn số nguyên dương a,b,c,d thỏa mãn ab=cd.Chứng minh rằng \(a^5+b^5+c^5+d^5\)là hợp số.
2.Cho các số tự nhiên a và b.Chứng minh rằng:
a, Nếu\(a^2+b^2\)chia hết cho 3 thì a và b chia hết cho 3.
b, Nếu\(a^2+b^2\)chia hết cho 7 thì a và b chia hết cho 7.
3.Cho các số nguyên a,b,c.Chứng minh rằng:
a, Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\)chia hết cho 6.
b, Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=4x+a;B=2x+1
2)A=6x-a;B=x+1
3)A=x2-ax+3;B=x-3
4)A=x2-4x-6;B=x+a
a) Cho a^2 + b^2 + c^2 + 3 = 2(a+b+c). Chứng minh a=b=c=1
b) Cho (a+b+c)^2 = 3(ab+bc+ac). Chứng minh a+b+c
c) Cho (a+b)^2 + (b-c)^2 + (c-a)^2 = (a+b-2c^2) + (b+c-2a^2) + (c+a-2b)^2. Chứng minh a=b=c
a ) cho a/b = c/d cm a-b/a=c-d/c
b ) cho a+2019/a-2019 = b + 2020 /b-2020 cm a/b = 2019/2020
cho các số nguyên a,b,c thỏa mãn: A= a^2+b^2+ab+3(a+b)+2018 chia hết cho 5.CMR a-b chia hết cho 5.
a, Cho a^2+b^2+c^2+3=2(a+b+c)
Chứng minh: a=b=c=1
b, Cho (a+b+c)^2=3(ab+ac+bc)
Chừng minh: a=b=c
c, Cho a,b,c,d (a,b,c,d khác 0) và (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chừng minh: a/c=b/d
d, Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh:a=b=c
cho a,b thuoc Z. chung minh rang
a. a^3 b-b^3 a chia het cho 6
b. a^5 b-b^5 a chia het cho 30
giai gjup mjnh nha