VM

Cho a,b dương thỏa mãn \(ab\ge1\) chứng minh\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

TT
31 tháng 5 2015 lúc 12:38

\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}>=\frac{2}{\left(1+ab\right)}\)

\(\Leftrightarrow\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}-\frac{2}{\left(1+ab\right)}>=0\)

\(\Leftrightarrow\left[\frac{1}{\left(1+a^2\right)}-\frac{1}{\left(1+ab\right)}\right]+\left[\frac{1}{\left(1+b^2\right)}-\frac{1}{\left(1+ab\right)}\right]>=0\)

\(\Leftrightarrow\left[\frac{a\left(b-c\right)}{\left(1+a^2\right)\left(1+ab\right)}\right]+\left[\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\right]>=0\)

\(\frac{\left[a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)\left(a+ab^2-b+ba^2\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)\left[\left(a-b\right)+ab\left(b-a\right)\right]\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\)

\(\frac{\left[\left(b-a\right)^2\left(ab-1\right)\right]}{\left[\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)^2\right]}>=0\left(1\right)\)

Mẫu số luôn lớn hơn 1 

\(\left(b-a\right)^2>=0\)  voi moi a,b

Vì a,b >=1 nên ( ab-1) > = 0

​Nên (1)  dụng

 

Bình luận (0)
TT
31 tháng 5 2015 lúc 12:39

Tu "dung"doi thanh dung

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết
LP
Xem chi tiết
KB
Xem chi tiết
CD
Xem chi tiết
NN
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết