cho \(\frac{a}{b}=\frac{c}{d},\)(b+d khác 0), CMR\(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\)
Cho a,b,c,d khác 0 và
b2=a.c;c2=b.d
b3+c3+d3khác 0
CMR:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Cho 4 số a,b,c,d khác 0 và thỏa mãn : b2=a.c; c2=b.d; b3+c3+d3 khác 0.
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
cho a.c=b^2;b.d=c^2 và a,b,c,d khác 0. Chừng minh rằng: a^3.d+b^3.d+c^3.d=a.b^3+c^3.a+a.d^3
Cho b2=a.c, c2=b.d với b,c,d khác 0, b khác c khác d và b3+c3 khác d3
CMR a3+b3-c3/b3+c3-d3=(a+b-c/b+c-d)3
cho a , b , c , d khác 0
b2=a.c
c2=b.d
cmr: (a^3 + b^3 + c^3) / (b^3+c^3+d^3) = [(a+b+c)^3] / [(b+c+d)^3]
các biểu thức trên có nghĩa
Cho \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0
C/m \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR:
\(a,\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\) \(b,\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)\(c,\frac{a.c}{b.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
GIẢI GIÚP TỚ NHANH NHÉ! CẢM ƠN NHIỀU!