cho bài toán mà viết tắt ko hiểu cái j kả
Theo giả thuyết ta có: a > 0;b > 0
\(\Rightarrow\)a+b > 0
hk tốt
Xét VD: 5,6>0
5+6>0 vì 5+6=11
vậy a+b>0(đpcm)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho bài toán mà viết tắt ko hiểu cái j kả
Theo giả thuyết ta có: a > 0;b > 0
\(\Rightarrow\)a+b > 0
hk tốt
Xét VD: 5,6>0
5+6>0 vì 5+6=11
vậy a+b>0(đpcm)
cho a+b+c=0 và khác 0
rút gọn: A=a^2/a^2-b^2-c^2 +b^2/b^2-c^2-a^2 +c^2/c^2-a^2-b^2
Cho hai so a,b không đồng thời bằng 0.Tìm GTLN,GTNN Của biểu thức :
Q=a*a-ab+b*b\a*a+ab+b*b
I.Trắc nghiệm
Câu 1: Nếu A chia hết cho 2 và B chia hết cho 4 ( A > B ) thì:
A. ( A+B) chia hết cho 4.
B. ( A-B ) chia hết cho 2.
C. ( A-B ) chia hết cho 6.
D. ( A-B ) chia hết cho 8.
Giải chi tiết giúp mình ( nếu đc )
Thanks =)
Cho ba số a,b,c phân biệt . Chứng minh rằng biểu thức
A = a4( b - c ) + b4( c - a ) + c4( a - b ) luôn khác 0
biết a+b=9 tính 0,a(b)+0,b(a)
cho a,b,c>0
Cmr \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) (bdt Nesbit)
bang phuong phap SOS
Cho a,b,c > 0 . Chứng minh rằng :
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)
Dạng 1: Bất đẳng thức cô-si
Bài 1 : Cho a,b.c>0 Chứng minh rằng \(a^3+b^3+c^3\ge a^2b+b^2c+ca^2\)
từ đó Chứng minh dạng tổng quát là : \(a^x+b^x+c^x\ge a^m.b^n+b^m.c^n+c^m.a^n\) ( m,n,x là các số nguyên dương và m+n=x)
Bài 2: Cho a,b.c>0
a)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge a+b+c\)
b) Chứng minh rằng \(\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge a+b+c\) ( cả 2 câu này cach làm như nhau nhé !)
Bài 3 :Cho a,b,c> 0 Thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Áp dụng 1 trong 2 bài trên )
Bài 4:Cho x,y >0 thỏa mãn \(x+y\le2\)
Tìm min của \(A=\frac{1}{x^2}+\frac{1}{y^2}+2x+2y\)
^_^
Mấy câu này các bạn k cần full cũng được!
cho a,b,c>0
CM
a,b,c có 1 số ko âm