Cho a,b,c >0 và a+b+c=3.
Tìm min \(P=\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\)
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
cho a;b>0 ; a+2b nho hon hoac bang 3
tìm min 1/(a^2 +1) + 2/(b^2 +1)
1. a,b>0, a+b<=1. tìm min P= 1/(a^3+b^3)+1/a^2b+ab^2 ( Dùng BĐT cộng mẫu cho 3 số)
2. a,b,c>0, a^2+b^2+c^2>=1. tìm min P= a+b+c+1/abc
3. x,y,z>0, 1/x+1/y+1/z=4. tìm min P= 1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z)
Cho a,b,c >0 và a+b+c=3. Tìm Min P=a2+b2+c2+\(\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\).
cho a+b+c=3/2 a,b,c>0 tìm min F=\(\dfrac{a^2}{a+2b^2}\)+\(\dfrac{b^2}{b+2c^2}\)+\(\dfrac{c^2}{c+2a^2}\)
Cho a, b, c > 0 và \(a+2b+3c\ge20\) . Tìm MIN của :
A = \(a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(\frac{a}{1+2b^2}+\frac{b}{1+2c^2}+\frac{c}{1+2a^2}\)Cho a,b,c>0 và ab+bc+ca=3 Tìm min P =
cho 3 so a,b,c>0 và a+b+c=1 Tim min A=(a^2+b^2+c^2)+(ab+bc+ca)/(a^2b+b^2c+c^2a)