Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

ND

Cho A=9999931999-5555571997.Chứng minh rằng A chia hết cho 5

FT
17 tháng 1 2016 lúc 13:41

nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5

Tick nha 

Bình luận (0)
H24
17 tháng 1 2016 lúc 13:42

Ta có: 9999931999=(...3)499.4+3

                         =[(...3)4]499.(...3)3

                         =(...1)499.(...7)

                         =(...1).(...7)

                         =(...7)

Ta có: 5555571997=(...7)4.499+1

                           =[(...7)4]499.(...7)1

                          =(...1)499.(...7)

                          =(...1).(...7) 

                         =(...7)

Vậy A=(...7)-(...7)=(...0)

Mà các số có CSTC là 0 thì chia hết cho 5

=>A chia hết cho 5(đpcm)

          

Bình luận (0)
PT
17 tháng 1 2016 lúc 13:48

Ta co: 3^1999=(3^4)^499.3^=81^499.27

=>3^1999co tan cung la 7

7^1997=(7^4)=2041^499.7=>7^1997 co tan cung la 7

Vay A co tan cung la 0 =>A chia het cho 5

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
NN
Xem chi tiết
NC
Xem chi tiết
TL
Xem chi tiết
PN
Xem chi tiết
HH
Xem chi tiết
HE
Xem chi tiết
DM
Xem chi tiết
HD
Xem chi tiết
DM
Xem chi tiết