NM

Cho a=6n+5 và b=2n+1 (nϵN), chứng tỏ a và b là số nguyên tố cùng nhau với mọi n

NM
26 tháng 12 2022 lúc 9:38

Gọi d\inƯCLN\left(2n+1;6n+5\right) nên ta có :

2n+1⋮d và 6n+5⋮d

\Leftrightarrow3\left(2n+1\right)⋮d và 6n+5⋮d

\Leftrightarrow6n+3⋮d và 6n+5⋮d

\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d

\Rightarrow2⋮d\Rightarrow d=2

Mà 2n+1;6n+5 là các số lẻ nên không thể có ước là 2

\Rightarrow d=1

\Rightarrow2n+1 và 6n+5 là nguyên tố cùng nhau

Bình luận (0)

Các câu hỏi tương tự
KJ
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết
VD
Xem chi tiết
DG
Xem chi tiết
DA
Xem chi tiết