Ta có: \(A=\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=3\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^{16}-1\right)\left(4^{16}+1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=\left(4^{32}-1\right)\left(4^{32}+1\right)\)
\(\Rightarrow3A=4^{64}-1\)
mà \(B=4^{64}-1\)
Vậy \(B=3A\)